首页> 外文OA文献 >Estimation of path delays, TEC and faraday rotation from SAR data
【2h】

Estimation of path delays, TEC and faraday rotation from SAR data

机译:根据SAR数据估算路径延迟,TEC和法拉第旋转

摘要

Spaceborne synthetic aperture radar (SAR) systems are used to measure\udgeo- and biophysical parameters of the Earth’s surface, e.g. for agriculture, forestry\udand land subsidence investigations. Recently launched and upcoming spaceborne SAR\udsatellites continue the trend of measuring these parameters on a global scale from space\udwith continually higher accuracies. Larger frequency modulated chirp bandwidths and increased\udspatial resolution allow for new and additional information with higher geometric\udresolution. One dares to hope that in the near future space borne radar remote sensing\udwill be the able to contribute to monitoring for earthquake precursors. The use of large\udbandwidths, however, causes signal degradation within the ionosphere. Under high solar\udactivity conditions and at low carrier signal frequency, ionosphere-induced path delays\udand Faraday rotation (FR) become significant for SAR applications. The influence of the\udtroposphere becomes relevant given geolocation accuracy requirements of less than 1 m as\udobtained e.g. with TerraSAR-X by the German Aerospace Center (DLR).\udBy means of an in-depth analysis from radar signal propagation through the atmosphere\udand within a standard SAR system model, this dissertation shows possibilities for\udmeasuring, extracting and correcting propagation effects of the two layers most relevant\udto accurate spaceborne SAR measurement: the troposphere and ionosphere. In order\udto test and crosscheck both measurements and models, data obtained from TerraSAR-X\udalong with differential GPS position measurements of corner reflectors (CR) at different\udaltitudes were processed for the tropospheric investigations. Measured data from the\udJapanese Phased Array L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced\udLand Observing Satellite (ALOS), and simulated data from a potential P-band\udsystem were used to examine and simulate the ionospheric effects and to establish space\udborne methods for the extraction of ionospheric total electron content (TEC) and FR from\udSAR data. Concluding propositions evaluate possible SAR sensor and signal modifications\udto facilitate corrections.
机译:星空合成孔径雷达(SAR)系统用于测量地球表面的\预算和生物物理参数,例如用于农业,林业\土地和地面沉降调查。最近发射和即将发射的星载SAR \ udsatellite继续在全球范围内以不断提高的精度从太空\ ud测量这些参数的趋势。较大的调频线性调频带宽和增加的\ udspatial分辨率允许具有更高的几何\ udresolution的新信息和其他信息。一个人敢于希望,在不久的将来,星载雷达遥感\ ud能够为监测地震前兆做出贡献。但是,使用大\超带宽会导致电离层内的信号衰减。在高太阳\多态性条件下和低载波信号频率下,电离层引起的路径延迟\ udand法拉第旋转(FR)对于SAR应用而言意义重大。给定例如小于1 m的地理位置精度要求时,对流层的影响变得很重要。 \ ud通过在标准SAR系统模型中对雷达信号通过大气传播的深入分析,在标准SAR系统模型中进行了深入的研究,从而证明了进行\ u测量,提取和校正传播的可能性对流层SAR和电离层这两个与最精确的星载SAR测量最相关的影响。为了对测试和模型进行\ udto测试和交叉检验,对来自TerraSAR-X \ udalong的数据进行了处理,以对角线反射器(CR)在不同纬度上的差分GPS位置测量进行对流层研究。来自\ ud日本相控阵L波段合成孔径雷达(PALSAR),先进\ udLand观测卫星(ALOS)上的测量数据以及来自潜在P波段\ udsystem的模拟数据被用来检查和模拟电离层效应,以及建立从\ udSAR数据中提取电离层总电子含量(TEC)和FR的空间方法。结论命题评估了可能的SAR传感器和信号修改,以利于校正。

著录项

  • 作者

    Jehle, M;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号